1st Edition

Robust Computational Techniques for Boundary Layers




ISBN 9781584881926
Published March 30, 2000 by Chapman and Hall/CRC
256 Pages

USD $195.00

Prices & shipping based on shipping country


Preview

Book Description

Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques for Boundary Layers, the authors construct numerical methods for solving problems involving differential equations that have non-smooth solutions with singularities related to boundary layers. They present a new numerical technique that provides precise results in the boundary layer regions for the problems discussed in the book. They show that this technique can be adapted in a natural way to a real flow problem, and that it can be used to construct benchmark solutions for comparison with solutions found using other numerical techniques.

Focusing on robustness, simplicity, and wide applicability rather than on optimality, Robust Computational Techniques for Boundary Layers provides readers with an understanding of the underlying principles and the essential components needed for the construction of numerical methods for boundary layer problems. It explains the fundamental ideas through physical insight, model problems, and computational experiments and gives details of the linear solvers used in the computations so that readers can implement the methods and reproduce the numerical results.

Table of Contents

Introduction to Numerical Methods for Problems with Boundary Layers. Numerical Methods on Uniform Meshes. Layer Resolving Methods for Convection-Diffusion Problems in One Dimension. The Limitations of Non-Monotone Numerical Methods. Convection-Diffusion Problems in a Moving Medium. Convection-Diffusion Problems with Frictionless Walls. Convection-Diffusion Problems with No Slip Boundary Conditions. Experimental Estimation of Errors. Non-Monotone Methods in Two Dimensions. Linear and Nonlinear Reaction-Diffusion Problems. Prandtl Flow past a Flat Plate-Blasius' Method. Prandtl Flow past a Flat Plate-Direct Method. References.


NTI/Sales Copy

...
View More

Author(s)

Biography

Farrell, Paul; Hegarty, Alan; Miller, John M.; O'Riordan, Eugene; Shishkin, Grigory I.